Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Huntingtons Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640164

RESUMO

Background: Huntington's disease is an inheritable autosomal dominant disorder caused by an expanded CAG trinucleotide repeat within the Huntingtin gene, leading to a polyglutamine (polyQ) expansion in the mutant protein. Objective: A potential therapeutic approach for delaying or preventing the onset of the disease involves enhancing the degradation of the aggregation-prone polyQ-expanded N-terminal mutant huntingtin (mHTT) exon1 fragment. A few proteases and peptidases have been identified that are able to cleave polyQ fragments with low efficiency. This study aims to identify a potent polyQ-degrading endopeptidase. Methods: Here we used quenched polyQ peptides to identify a polyQ-degrading endopeptidase. Next we investigated its role on HTT turnover, using purified polyQ-expanded HTT fragments and striatal cells expressing mHTT exon1 peptides. Results: We identified insulin-degrading enzyme (IDE) as a novel endopeptidase for degrading polyQ peptides. IDE was, however, ineffective in reducing purified polyQ-expanded HTT fragments. Similarly, in striatal cells expressing mHTT exon1 peptides, IDE did not enhance mHTT turnover. Conclusions: This study shows that despite IDE's efficiency in degrading polyQ peptides, it does not contribute to the direct degradation of polyQ-expanded mHTT fragments.

3.
Methods Mol Biol ; 2643: 345-357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952197

RESUMO

Organelles physically interact with each other via protein tethering complexes that bridge the opposing membranes. Organelle membrane contacts are highly dynamic, implying dynamism of the tethering complexes. Alterations in the binding of the tethering proteins can be assessed by immunoprecipitation. Antibody-conjugated beads allow for purification of the target protein with its binding partners, which can subsequently be examined by western blot analysis. We present immunoprecipitation methods and strategies to examine protein interaction domains, and for the identification of residues important for the regulation of the interaction, here focusing on phosphorylation. We use the peroxisomal membrane protein ACBD5 and its paralog ACBD4, which both bind ER membrane protein VAPB to mediate peroxisome-ER contacts, as example. However, this method can be applied to other peroxisomal and non-peroxisomal (membrane) proteins.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Domínios e Motivos de Interação entre Proteínas
4.
Bioessays ; 44(11): e2200151, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180400

RESUMO

In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.


Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
5.
Front Cell Dev Biol ; 10: 895856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756994

RESUMO

Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.

6.
Contact (Thousand Oaks) ; 5: 1-4, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35611050

RESUMO

Peroxisomes and the ER are closely inter-connected organelles, which collaborate in the metabolism of lipids. In a recent research paper in the Journal of Cell Biology, we describe a novel mechanism by which peroxisome-ER membrane contact sites are regulated, via phosphorylation of the peroxisomal protein ACBD5. We found that the interaction between ACBD5 and the ER protein VAPB, which we have previously shown to form a tether complex at peroxisome-ER contacts, is controlled by phosphorylation of ACBD5 at two different sites of its FFAT motif - the VAPB binding site. We also identify the kinase GSK3-ß as being responsible for direct phosphorylation of ACBD5 to negatively regulate interaction with VAPB, leading to reduced peroxisome-ER contacts. In this article we provide additional insights into how this work, in combination with other studies on phosphorylation of VAP interactors, suggests a complex system of both positive and negative regulation of the FFAT motif via phosphorylation.

7.
J Cell Biol ; 221(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35019937

RESUMO

Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A-binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein-associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome-ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB-and thus peroxisome-ER contact sites-differently. Moreover, we demonstrate that GSK3ß (glycogen synthase kinase-3 ß) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome-ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Retículo Endoplasmático/ultraestrutura , Humanos , Proteínas de Membrana/genética , Camundongos , Mutação/genética , Peroxissomos/ultraestrutura , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica
8.
Front Cell Dev Biol ; 8: 577637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195217

RESUMO

In mammals, peroxisomes perform crucial functions in cellular metabolism, signaling and viral defense which are essential to the viability of the organism. Molecular cues triggered by changes in the cellular environment induce a dynamic response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal morphology. How the regulation of this process is integrated into the cell's response to different stimuli, including the signaling pathways and factors involved, remains unclear. Here, a cell-based peroxisome proliferation assay has been applied to investigate the ability of different stimuli to induce peroxisome proliferation. We determined that serum stimulation, long-chain fatty acid supplementation and TGFß application all increase peroxisome elongation, a prerequisite for proliferation. Time-resolved mRNA expression during the peroxisome proliferation cycle revealed a number of peroxins whose expression correlated with peroxisome elongation, including the ß isoform of PEX11, but not the α or γ isoforms. An initial map of putative regulatory motif sites in the respective promoters showed a difference between binding sites in PEX11α and PEX11ß, suggesting that these genes may be regulated by distinct pathways. A functional SMAD2/3 binding site in PEX11ß points to the involvement of the TGFß signaling pathway in expression of this gene and thus peroxisome proliferation/dynamics in humans.

9.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118675, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044385

RESUMO

Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fungos/metabolismo , Neoplasias/metabolismo , Animais , Proteínas de Transporte/química , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/genética , Metabolismo dos Lipídeos , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios Proteicos
10.
Front Mol Biosci ; 6: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380390

RESUMO

Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...